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Studies have found that some teacher professional development programs that are based on Cognitively Guided Instruction (CGI) 
can increase student mathematics achievement. The mechanism through which those effects are realized has been theorized, but 
more empirical study is needed. In service of this need, we designed a novel measure of instructional practice to assess the extent 
to which observable features of mathematics instruction are consistent with the principles of CGI. We describe the conceptual 
foundations and first use of the instrument, which we call M-CLIPS. We found that teachers involved in the first 2 years of a CGI 
program were using methods consistent with the principles. In contrast, instructional practice in the comparison condition was 
mostly inconsistent with those principles.
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Several experimental and quasi-experimental studies of mathematics professional development (PD) programs that are 
based on Cognitively Guided Instruction (CGI) have reported positive effects on students (Carpenter et al., 1989; Fennema 
et al., 1996; Jacobs et al., 2007; Schoen et al., 2020, in press; Schoen, Rhoads, et al., 2022; Villaseñor & Kepner, 1993). 
These studies postulated that the effects of CGI PD on students are mediated by the teacher, primarily through instructional 
practice (Carpenter et al., 1989; Schoen, Bray, et al., 2022; Schoen, Rhoads, et al., 2022). CGI books have offered some 
principles and suggestions for instructional practice (Carpenter et al., 1999, 2003, 2015, 2017; Empson & Levi, 2011), but 
they did not prescribe a specific model of classroom implementation. Likewise, the CGI PD programs in these studies did 
not provide a curriculum and were not prescriptive regarding how teachers should use what they learned in CGI PD.

The combination of the existence of studies demonstrating a positive impact on student learning and the lack of explicit 
guidance for the implementation of CGI creates a “black box” problem with respect to understanding the mechanisms 
through which CGI affects learning. Without empirical data collected through observation of instructional practice, we 
must rely on theory to explain how the CGI PD changes classroom instruction and student learning. Small studies can offer 
detailed explanations for how these factors appear to interact in individual schools or classrooms. However, measurement 
of instructional practice using relatively efficient and objective instruments is needed to support arguments about gener-
alizability and an examination of how mechanisms interact similarly or differently in various settings.

In this article, we describe our recent efforts to identify and measure observable indicators of mathematics instructional 
practice that are consistent with CGI principles. These efforts resulted in the development of a novel observational measure 
of instructional practice that we call Mathematics-Cognition, Language, Interaction, and Problem Solving (M-CLIPS). 
The purpose of this article is to describe what M-CLIPS measures and whether it can provide insight into instructional 
practice in CGI and practice-as-usual classrooms. The following research questions guided the study:

	 1.	 What	can	the	data	from	M-CLIPS	tell	us	about	how	instructional	practice	differs	within	and	between	groups	of	
teachers	who	have	and	have	not	participated	in	the	first	2	years	of	a	CGI-based	program?

	 2.	 Can	the	M-CLIPS	instrument	detect	group-level	differences	in	mathematics	instruction	enacted	by	teachers	partic-
ipating	in	a	CGI-based	PD	program	compared	with	those	who	are	not?
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Grant No. R305A180429 to Florida State University. The opinions expressed are those of the authors and do not represent 
views of the Institute or the U.S. Department of Education.
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Brief Background on Cognitively Guided Instruction
The unifying premise of CGI is that children enter school with experiential knowledge and both formal and informal 

mathematical knowledge that can serve as a foundation for learning much of the early elementary mathematics curriculum 
(Carpenter et al., 1996, 1999). A CGI approach to teacher PD is based on the notion that children often view mathematics 
differently than adults do and that striving to understand the child’s perspective is an important part of teaching. The 
developers of CGI advocate for children to be encouraged to solve problems in ways that make sense to them and for 
instruction to build on children’s ways of thinking as their ideas become more sophisticated or abstract. The teacher’s role 
in implementation of CGI is to provide instruction that leverages and elevates children’s ways of knowing and understanding 
for use as a foundation to build new knowledge.

CGI PD develops teachers’ capacities to attend to the details in their students’ mathematical thinking by supporting them 
to construct and test models of student thinking in specific content domains. Teachers learn a great deal about mathematics 
language and content through CGI PD, and they do so by observing and discussing how children think about mathematics 
(Schoen, Bray, et al., 2022). Although CGI PD programs refrain from telling teachers exactly how to use what they learn 
in the PD program to teach, the resulting change in teachers’ pedagogical content knowledge and beliefs “provides a context 
in which teachers can interpret and apply general pedagogical knowledge” (Carpenter et al., 1996, p. 4). The previously 
mentioned empirical studies demonstrating that CGI can increase student achievement are compelling and in need of 
explanation. Flexibility in the interpretation of CGI in practice may be one quality that makes CGI powerful and robust, 
but it also presents a challenge with respect to understanding the mechanisms through which CGI affects students. 
Researchers and practitioners alike want to know what changes in instructional practice are expected to be implemented 
as a result of participation in CGI PD programs and how those changes ultimately relate to student outcomes. The following 
sections describe our attempts to conceptualize core principles of CGI, relate those principles to extant research on instruc-
tional practice, and translate the principles into measurable features of mathematics teaching and learning environments.

Deciding What to Look For Inside the Black Box of Mathematics Instruction
Mathematics instruction can be conceptualized in myriad ways and involves a complex orchestration of behaviors, 

decisions, classroom norms, and more. Driven by the goal of measuring observable features of instructional practice that 
could represent the CGI principles in action, we knew that we would have to make decisions about how to narrow the focus 
to a few key features. We studied the definitive CGI books and dozens of CGI-related research articles to seek guidance 
on how to conceptualize implementation of CGI in ways that would be consistent across various interpretations and exam-
ples of CGI programs. Over the past decade, we also collectively observed hundreds of days of CGI PD and hundreds of 
classroom lessons facilitated by teachers who had participated in CGI PD as well as teachers who had not participated in 
CGI PD. This gave us valuable insight into the contrasting approaches to mathematics instruction in practice-as-usual 
classrooms and in classrooms of teachers who had been involved in CGI PD. We then drafted overarching principles and 
observable aspects of classroom instruction that seemed to be consistent with CGI principles and received critical feedback 
on these drafts from CGI experts and members of our project advisory board, including authors of the definitive CGI books.

Conceptual Framework for M-CLIPS
Our review of CGI-related literature, observation of CGI PD, and observation of classroom instruction led to our iden-

tification of the following four core principles regarding observable features of CGI implementation in mathematics lessons:

 1. Problem solving plays an integral role in the teaching and learning of mathematics.
 2. The teacher attends to students’ mathematical thinking.
 3. Students engage with their peers’ ideas about mathematics.
 4. The teacher supports students’ understanding and meaningful use of the language of mathematics.

Our thesis is that features of these four principles are present and observable in mathematics lessons when CGI is imple-
mented. These principles and associated instructional practices, described in subsequent sections, are informed by 
CGI-related research but not determined solely by it. They also reflect emergent principles and practices in the broader 
field of mathematics teaching and learning.

Principle 1: Problem Solving Plays an Integral Role in the Teaching and Learning of Mathematics
Problem solving involves grappling with tasks for which the path to a solution is not already known by the student or 

prescribed by the teacher (National Council of Teachers of Mathematics [NCTM], 2000). During problem solving, students 
engage in the work of making sense of problems, deciding how to approach solving them using what they already know, and 
reflecting on their progress. Discussing teaching through problem solving, Carpenter et al. (2015) emphasized, “the critical 
consideration is that students are engaged in deciding how to solve problems using what makes sense to them” (p. 78).
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Research on CGI classrooms illustrates how the teaching and learning of fundamental aspects of the elementary math-
ematics curriculum (e.g., meaning and application of basic operations, base-ten number system, fact fluency, and word 
problems) can be taught through problem solving (Bray & Blais, 2017; Bray & Maldonado, 2018; Fennema et al., 1993; 
Hiebert et al., 1996). Students are presented with problems that they do not yet know how to solve and are encouraged to 
construct their own ideas and solutions through reasoning and sense making. The students’ methods of solving problems 
can then, in turn, be used to make key mathematical ideas more salient, usually during a discussion or reflection phase of 
a lesson. Worked examples are often provided and examined by the class and represent the mathematical ideas of the class 
members, not some outsider’s ideas. The resulting strategies for solving the problem typically do not conform to a single 
method used by all the students, although a high degree of commonality can exist among strategies and notation used by 
individuals in a classroom.

Mathematical tasks (or problems) implemented through problem solving typically allow multiple entry points and possible 
solution paths, allowing students at varying levels of mathematical understanding to engage in high levels of cognitive 
complexity (Stein et al., 2009). The students’ role in working on high-level tasks involves some combination of reasoning and 
sense making, creativity, planning, mathematical modeling, providing explanations and justifications, making generalizations, 
or analysis of mathematical ideas. Teachers intentionally budget sufficient time and make available a variety of tools to support 
students’ efforts to devise their own ways of approaching assigned problems. Teachers support student engagement in tasks in 
ways that maintain the cognitive complexity for students, even when students experience struggle (Henningsen & Stein, 1997).

Teachers who implement a problem-solving approach to mathematics instruction must honor the diversity in students’ 
perspectives, thoughts, and ways of approaching problems. Teachers demonstrate genuine appreciation for student efforts 
that involve novel methods or interpretations, concrete models, or heuristical strategies, including those that end in partial 
or incorrect solutions. Teachers convey a sense that variation in perspective is to be celebrated, and the process of problem 
solving creates opportunities to learn from one another and celebrate each individual’s contributions to their own learning 
and that of the class. In such environments, the teacher engages with students’ mathematical work and ideas with the utmost 
respect (Reeve & Jang, 2006; Strati et al., 2017). The teacher consistently conveys curiosity and interest in students’ ideas 
and confidence in their abilities as problem solvers (Kazemi & Hintz, 2014). The teacher is careful to consistently position 
all students’ contributions as valuable for their own learning and that of the class.

Principle 2: The Teacher Attends to Students’ Mathematical Thinking
In the complex environment of a mathematics classroom, many factors compete for the teacher’s attention (Sherin et 

al., 2011). A hallmark feature of CGI is a deliberate choice by the teacher to attend to the details in students’ thinking 
processes during and after the process of solving problems with the intention to use what is learned to inform teachers’ 
subsequent instructional decisions (Carpenter et al., 1989, 2015; Fennema et al., 1993; Jacobs et al., 2022). Through CGI 
PD, teachers learn to observe and interact with students with a focus on gathering information about how individual 
students are solving and thinking about mathematics problems. Students’ final answers to a given mathematics problem 
are important, but the final answer (and its correctness) is just one of many pieces of information gathered by the teacher 
about student understanding.

Teachers can gather information about individual students’ mathematical thinking by being attentive to how students 
manipulate materials, record their ideas on paper, or use words and gestures to describe their thoughts (Sherin & Lynn, 
2019). Although passive observation offers the opportunity to gather some evidence of children’s thinking, high levels of 
attending often involve teacher questioning and in-the-moment teacher–student interactions that serve to further elicit, 
support, or extend the thinking of that specific student (Empson & Jacobs, 2008; Fraivillig et al., 1999). Jacobs and Empson 
(2016) stressed the importance of teachers making sense of a child’s current thinking before attempting to build on it. This 
involves eliciting information about the details of a student’s existing strategy by posing starter questions to initiate conver-
sation	(e.g.,	How	are	you	thinking	about	this	problem?)	and	pressing	students	for	an	explanation	of	specific	parts	of	their	
problem-solving	process	(e.g.,	What	did	you	do	first?	What	do	these	marks	on	your	paper	represent?	Can	you	tell	me	what	
you	heard	in	your	mind	when	you	were	doing	that?).	Teachers	may	also	ask	follow-up	questions	that	probe	the	limits	of	a	
student’s	understanding	(e.g.,	What	would	happen	if	.	.	.	?).	Although	these	questions	might	be	asked	to	extend	students’	
thinking, their main purpose can be to support teacher assessment of student thinking, which can inform the teacher about 
student understanding or interests. A student’s responses can help a teacher to pinpoint where that student’s thinking on 
that problem may fit in the CGI frameworks for types of strategies.

Principle 3: Students Engage With Their Peers’ Ideas About Mathematics
In CGI classrooms, peer interaction is a key mechanism to support learning. Peer interaction involves students in 

expressing their own mathematical ideas and actively engaging with the ideas generated by other students (Carpenter et al., 
2015; Fennema et al., 1996; Franke et al., 2015). Students in CGI classrooms do learn from the teacher, but they also learn 
from their peers and through participation in the interactive, social aspects of doing mathematics. Such interactions provide 
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motivation for students to make their own thinking explicit, learn from the ideas of others, and actively reflect on the 
underlying structure of mathematical concepts (Chapin & O’Connor, 2007; Mercer & Howe, 2012).

Collaborative groups and teacher-facilitated discussion are two interactive classroom structures that have been found 
through previous research to postively affect student learning (Mercer & Howe, 2012; Webb et al., 2014; Woods et al., 
2006). This body of research emphasized, however, that the quality and content of interactions matter. To reap the benefits 
of collaborative groups, students must express and justify their own ideas and actively engage in listening to, making sense 
of, and responding to the ideas of group members (Ing et al., 2015). Similarly, research on social interaction patterns in 
teacher-facilitated discussion has suggested that greater student involvement is related to higher levels of expressed math-
ematical student thinking and achievement (Webb et al., 2014; Woods et al., 2006). Furthermore, the degree to which 
students give detailed explanations and the degree to which they engage with the mathematical ideas of others are predictive 
of student learning outcomes (Webb et al., 2019).

The teacher plays a critical role in cultivating and reinforcing social norms for classroom interactions focused on math-
ematics (Franke et al., 2015; Mercer & Howe, 2012; Walshaw & Anthony, 2008; Yackel & Cobb, 1996). Teachers must 
create respectful and equitable learning environments in which students’ ideas are taken seriously, no one’s ideas are 
derided or ignored, and all students are welcome in the conversation (Chapin & O’Connor, 2007). Teachers orient students’ 
attention to one another’s ideas by positioning students and their ideas as important resources for learning, including during 
moments of struggle (Franke et al., 2015; Gresalfi, 2009; Kazemi & Hintz, 2014; Webb et al., 2008). Researchers have 
identified specific conversational actions that teachers can use to support productive discussion, such as revoicing, inviting 
to add on, and providing sufficient wait time (Chapin & O’Connor, 2007). Ing et al. (2015) found that teachers’ support for 
student participation, defined as their actions to elicit student thinking and support students with engaging in the mathe-
matical ideas of their peers, positively predicted student participation, which in turn positively predicted student achievement.

Principle 4: The Teacher Supports Students’ Understanding and Meaningful Use of the Language of Mathematics
Mathematical language may be interpreted broadly to include both expressive and receptive communication in spoken, 

written, and physical forms. Meaningful use of mathematical language is part and parcel of learning mathematics content. 
In the context of the CGI classroom, teachers and students communicate about and draw connections among mathematical 
ideas through spoken and written words, pictures, physical models, notations, and other forms of language. CGI teachers 
intentionally create abundant opportunities for students to express their mathematical thinking privately and publicly.

In CGI classrooms, teachers intentionally foster students’ abilities to express and elaborate their mathematical ideas 
through various representations, including words, writing, and mathematical models. The act of describing, explaining, 
and elaborating mathematical ideas helps students clarify and internalize key ideas, forge associations with related ideas, 
and identify gaps or weaknesses in understanding (NCTM, 2000). Teachers ask probing questions that support students 
in providing additional mathematical detail (Franke et al., 2009). They also support students’ development of increased 
clarity and precision through strategies such as revoicing (Forman et al., 1997; Michaels & O’Connor, 2015; Moschkovich, 
2015; O’Connor & Michaels, 1993) and co-constructing additional written or symbolic detail to reflect students’ thinking. 
When students share their problem-solving strategies, teachers provide ample time for students to give complete and 
detailed explanations (Webb et al., 2019).

External representations of mathematics concepts are always present in the mathematics classroom in some form. These 
external representations may be verbal, visual, contextual, physical, or symbolic manifestations of students’ thinking or 
mathematical concepts. Interpretation and use of various representations of mathematics concepts—and developing an 
understanding of the connections among those various representations—is of central importance in mathematics learning. 
Some scholars define understanding as the ability to recognize a mathematical idea embedded in different representations 
and to translate the idea from one representation to another (Haciomeroglu & Schoen, 2008; Lesh et al., 1987). Pape and 
Tschoshanov (2001) argued that the development of mathematical understanding is an interactive process in which internal 
and external representations are created and connected through language within a social context. In CGI classrooms, 
teachers engage students in dialogue about the connections among different mathematical representations to deepen their 
mathematical understandings (Hiebert & Carpenter, 1992; NCTM, 2014).

Interaction Among the Four Principles
The four principles are conceptualized and discussed separately in the previous sections, but these principles interact in 

many ways when put into practice. Peer interaction involves expressive and receptive communication. Peer interaction 
creates the opportunity to practice and acquire language skills and other important interpersonal communication skills 
that transcend mathematics. When teachers attend to student thinking, they require students to use language to express 
their thoughts—verbally or in writing. Problem-solving situations—wherein the teacher does not provide guidance about 
how to solve a problem—can help students develop confidence, agency, and autonomy, but they can also create important 
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and unique opportunities for teachers to attend to student thinking in ways that telling students how to solve problems 
cannot. Furthermore, interaction and communication among problem solvers can enhance their problem-solving experi-
ences and abilities. In other words, these four principles may be conceptualized as distinct aspects of instruction, but the 
implementation of the four principles can occur in many simultaneous and harmonic ways.

Alignment of Preexisting Instruments and the Four Principles
We examined several classroom observation instruments with the goal of finding one to measure teacher practices in 

mathematics instruction that would meet the following two criteria: (a) a focus on the four identified aspects of classroom 
instruction that are aligned with central principles of CGI, and (b) suitability for relatively efficient use at a large scale. We 
first reviewed instruments explicitly designed to study aspects of CGI-based classroom instruction (for example, see 
Empson & Jacobs, 2021; Fennema et al., 1996; Franke et al., 2009; Jacobs & Empson, 2016). These CGI-focused instruments 
yield useful insight into instructional practice aligned with CGI principles, but they require time-intensive data collection 
techniques, often involving repeated classroom observations and teacher interviews. Those techniques make them difficult 
to use on a large scale. Moreover, the conceptualization of CGI-aligned instruction has evolved over the decades to empha-
size interaction among classroom members (Principle 3) in ways that were not represented in some of the earlier approaches 
to measuring instructional practice in CGI-related studies (Carpenter et al., 2015).

We also reviewed mathematics classroom observation instruments that were designed to enable use at a large scale, 
including the Instructional Quality Assessment (IQA; Boston, 2012), the Mathematical Quality of Instruction instrument 
(MQI; Hill et al., 2008), the Teaching for Robust Understanding framework (TRU; Schoenfeld, 2018), the Mathematics Scan 
(M-Scan; Walkowiak et al., 2018), and others (cf. Nava et al., 2019; Reinholz & Shah, 2018). Each of these preexisting 
instruments has its merits, and most had some degree of alignment with the CGI principles we wanted to measure.1 Many 
measure cognitive demand, for example, which can be an indicator of the presence or absence of problem solving (Principle 
1). Attending to student thinking and adjusting instruction using what is learned about the student (Principle 2) is a funda-
mental principle of CGI—that is, after all, what “cognitively guided instruction” means—and can be considered as a method 
of engaging in formative assessment. Indeed, some of the extant instruments address formative assessment, although each 
instrument interprets formative assessment differently. For example, the M-Scan contains a rubric titled Responsiveness to 
Student Thinking within its Mathematical Accuracy dimension, but that rubric focuses on the extent to which teachers 
handle misconceptions and errors. CGI emphasizes the more asset-oriented framing of student conceptions as partial under-
standings (Franke et al., 2020). The IQA assumes a specific lesson structure involving student engagement in a task and 
then a whole-class discussion of the task. It has rubrics that measure teacher moves related to teachers attending to student 
thinking (e.g., linking), but those rubrics are situated in class discussion and would need to be reinterpreted to include 
examples of teachers attending to student thinking in ways that occur outside a whole-class discussion.

Ultimately, we concluded that the preexisting measures were partially aligned with these four CGI principles, but no 
individual measure was fully aligned with them. We considered selecting from several different instruments to create a 
composite instrument. After trying that approach, we concluded that the shift in thinking required of the observers to use 
rubrics with different design features was too challenging. Consequently, we undertook the project of developing a novel 
observation instrument.

Design of the M-CLIPS Instrument
In the service of our goal for M-CLIPS to efficiently measure identified aspects of mathematics instruction in the context 

of large-scale studies, we imposed a few design constraints. As mentioned earlier, M-CLIPS would involve only observation 
and, therefore, would not require or allow the observer to interview teachers or ask them to explain their actions or deci-
sions. M-CLIPS was intended to be useable in real-time classroom observation. This latter quality did not preclude the use 
of video, but it did create limitations on what could be coded. Each individual rubric was designed to measure a singular, 
observable topic associated with the four principles, and we aimed for a middle ground between a low-inference and a 
high-inference approach.

The M-CLIPS instrument is designed to measure each of the four principles by rating nine associated aspects of instruc-
tion using an observation of a single mathematics lesson.2 Each of the nine constructs is briefly described in Table 1 with 
the name of its corresponding rubric. Although we think these nine observable features are likely to be related to a single 

1 A full review of the alignment of these instruments to the four CGI principles is beyond the scope of this article. Several instruments were 
discussed in a special issue of ZDM (Charalambous & Praetorius, 2018).

2 Although the word “lesson” can refer to events that can take place over multiple days or are integrated into multiple components of the school day, 
our	operational	definition	of	mathematics lesson for the sake of observation and measurement is the time spent on mathematics instruction during the 
official	window	allocated	to	mathematics	on	a	single	school	day.
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latent trait (i.e., implementation of CGI in mathematics lessons), we defined each as distinctly as possible so that they could 
be conceptualized as nine independent components of instructional practice.

Each construct is rated on a 0–5-point rubric. The rubrics describe three levels: low (0–1), medium (2–3), and high (4–5). 
Within each level, a main level descriptor and indicators of observable behavior were developed through an iterative process 
of (a) a preliminary characterization of the aspect of instruction as aligned with CGI, (b) the identification of substantive 
ways that instruction related to the particular aspect may differ in classrooms of teachers who have and have not participated 
in CGI PD, (c) the description of observable indicators for the high, medium, and low levels, and (d) the revision of those 
descriptions on the basis of use with video data as well as feedback from external experts.

We attempted to calibrate the rubrics to enable M-CLIPS to discriminate among real examples of instructional practice 
that are not consistent with CGI principles, examples of instructional practice that are consistent with CGI principles but 
not fully incorporating all aspects of the principles into their practice, and exemplary implementation of the principles. 
Ratings of 0 or 1 indicate little or no evidence of alignment of instructional practices with CGI principles. Ratings of 2 or 
3 indicate the existence of some elements of practice that are consistent with the relevant CGI principle. Ratings of 4 or 5 
signify high levels of consistency with the given CGI principle. The highest rating (5) indicates that the lesson presents an 
exemplar of that particular aspect with respect to implementation of CGI principles in practice.

M-CLIPS is a rater-mediated instrument and requires observers to have a high degree of expertise in mathematics and 
mathematics teaching. Observers are trained to apply a common methodology to determining a rating for each rubric. The 
middle-ground approach between low-inference and high-inference design occasionally requires the observer to use a 
holistic approach to scoring.

Figure 1 presents the Autonomy rubric to provide an example of one of the nine rubrics. The Autonomy rubric is designed 
to measure the extent to which the teacher invites students to devise their own ways to solve mathematics problems. This 
is a fundamentally important distinction of a pedagogical approach in which students learn through problem solving.

Table 1

M-CLIPS Items, Their Associated Constructs, and Four Principles of CGI-Aligned Instruction
Construct (item name) Definition of associated construct

Principle 1: Problem solving
Problem solving plays an integral role in the teaching and learning of mathematics.

Autonomy (AUTO) The teacher facilitates students’ use of their emerging understandings of mathematical ideas 
to devise their own ways to solve mathematics problems.

Variation (VAR) Students exhibit variation and individual differences in their thoughts and approaches to 
solving mathematics problems.

Respect (RSPT) The teacher demonstrates respect and appreciation for each and every student’s abilities, 
perspectives, and contributions when they are solving mathematics problems.

Cognitive Complexity (CC) Enacted mathematical tasks engage students in high levels of cognitive complexity.
Principle 2: Cognition

The teacher attends to students’ mathematical thinking.
Attend (ATND) The teacher attends to the details in students’ mathematical thinking processes.

Principle 3: Interaction
Students engage with their peers’ ideas about mathematics.

Teacher Support for Peer Interaction 
(TSPI)

The teacher creates opportunities and provides support for students to interact with one 
another’s mathematical perspectives and ideas in order to advance their individual and 
collective understanding of mathematics.

Peer Interaction (PRI) Students interact with one another to support the advancement of their individual and 
collective understanding of mathematics.

Principle 4: Language
The teacher supports students’ understanding and meaningful use of the language of mathematics.

Express-Elaborate (EE) The teacher actively supports students with developing and refining their abilities to express 
and elaborate mathematical ideas.

Connecting Representations (CR) The teacher facilitates opportunities for students to examine conceptual connections among 
different external representations of mathematical concepts to support the advancement of 
their understanding and use of mathematics content and language.
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Low levels of autonomy do not present examples of applying the problem-solving principle to mathematics instruction. 
A rating of 1 indicates instruction in which the teacher shows or tells students how to solve problems and expects students 
to practice and use the instructed strategy.

At the medium level, teachers offer some autonomy with problem solving. Medium ratings may indicate a teacher who 
has released some amount of control over how students approach problems. Maybe they do this for only one or two prob-
lems, but not for every problem, or maybe they create opportunities for students to solve problems in their own ways but 
then respond to student struggle with a more directive approach to teaching.

The high level is characterized by the teacher’s consistent and sustained effort at facilitating students’ autonomy in their 
problem solving and efforts to solve problems using strategies with understanding. When a lesson is rated as having a high 

Figure 1

M-CLIPS Autonomy Rubric

Autonomy (AUTO)
The teacher facilitates students’ use of their emerging understandings of mathematical ideas to devise their own ways to 

solve mathematics problems.
High (4, 5)
Strong to expert 
implementation of 
principle

The teacher consistently creates and sustains opportunities for students to solve mathematics problems in 
any way they can and that makes sense to them.

All of the following are present:
a. Substantive part(s) of the lesson involve students in attempting to solve problems that the teacher has not 

shown them how to solve.
b. The teacher refrains from telling or showing students how they should solve problems, including when 

students experience difficulty.*
c. All students have opportunity to solve problems in their own ways (and decide how they will try to solve 

the problem).
d. The pace of instruction affords sufficient time for students to solve problems using strategies with 

understanding.
*The teacher responds to student difficulties in ways that stimulate rather than dominate student 
thinking—for example, by helping students to understand the problem, reflect on their approach, or by 
making modifications to the problem that bring the mathematics closer to the students’ understanding 
(e.g., reframe in meaningful context, modify numbers). The students remain in control of devising their 
own ways to solve problems. 

Medium (2, 3)
Weak to moderate 
implementation of 
principle

The teacher encourages or creates some opportunities for students to solve problems in ways of their own 
choosing, but those opportunities are limited.
The High rating is not warranted for one or more of the following reasons:
a. A substantial portion of the lesson involves explicit instruction on and/or practice of specific strategies 

for solving certain types of problems.
b. The teacher allows flexibility for some students to solve problems in their own ways, while others are 

expected to solve problems in prescribed ways.
c. The teacher provides insufficient time or tools for students to make sense of the problem.
d. The teacher invites students to solve problems by selecting a strategy from a menu of options that were 

previously instructed by the teacher or curriculum materials. 
e. The teacher tells the students that they can use any strategy they want to use but subsequently directs 

them to use specific strategies that are preferred by the teacher.
f. Teacher response to student struggle tends to direct or heavily guide students toward the teachers’ 

thinking (rather than stimulating the students’ thinking).
Low (0, 1)
Contradicts principle

The teacher does not encourage students to solve problems by using strategies of their own choosing or 
invention. The teacher consistently shows or tells students how to solve problems (i.e., explicit instruction) 
and expects students to practice and use the instructed strategy.
The teacher directs students to use a particular solution method that is known, prescribed, or heavily 
prompted by the teacher or textbook. A small amount of divergent thinking may be tolerated, such as when 
it involves ways to complete intermediate steps in an overall strategy. (1)
The teacher insists that students use a specific way of solving a given problem or actively discourages 
invented strategies or other forms of divergent thinking. Independent thinking or alternative methods of 
solving a problem are ignored, discouraged, or marginalized. (0)
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level of autonomy, substantive parts of lessons involve all students in solving problems that the teacher has not shown them 
how to solve, and evidence suggests that the teacher’s invitation to “solve it in any way that makes sense to you” is genuine. 
The teacher who supports autonomy budgets sufficient time for students to grapple with problems and, even when students 
experience difficulty, refrains from telling or showing students how they should solve problems.

The complete set of M-CLIPS rubrics is available for viewing and download online (https://osf .io /mk657). An interpre-
tation and use statement (Carney et al., 2022) can be found in the Appendix.

Methods and Materials
Data for the present study consist of ratings of videos of mathematics lessons collected as part of a larger randomized 

controlled trial of the effect of a CGI PD program on teachers, teaching, and students.

Setting and Sample
Teachers from 22 elementary schools from two Florida school districts participated in the study. The first district served 

approximately 200,000 students in a mix of urban, suburban, and rural settings. The second district, adjacent to the first, 
was a suburban district that served approximately 60,000 students. Both districts served a diverse student population, with 
more than half of their students belonging to racially or ethnically minoritized groups.

Teacher participants could consent to participate in the larger study without consenting to participate in the video study. 
To be eligible for the video study, a teacher had to teach first- or second-grade mathematics in one of the 22 schools, the 
teacher had to consent to participate in the video study, and at least two thirds of the students in the teacher’s class had to 
have positive, informed consent for the video component of the study. Only teachers who participated in both years of the 
study were eligible for random selection for the video component in the 2nd year of the study. Sampling procedures used 
random selection and were conducted separately in each year. We selected a random sample of up to two teachers per grade 
level in each school with eligible teachers/classrooms.

The resulting sample for the video study consisted of a total of 42 teachers/classrooms in the 1st year and 47 teachers/
classrooms in the 2nd year. Of those, 37 teachers were video recorded on two occasions in the 1st year. By design, no 
teachers were video recorded twice during the 2nd year. In total, 22 teachers were video recorded in both years. Tables 2 
and 3 give teacher demographics by condition and grade for teachers in the sample for the 1st and 2nd years of the video 
study, respectively.

At least three randomly assigned observers rated each of the 126 available videos. In cases in which more than three 
observers rated a video, three of the observers’ ratings were randomly selected from the full set of complete ratings and 
used in the analyses. This ensured that each video had exactly three sets of ratings and that each set of ratings was weighted 
equally. We consider this set of exactly three observations for each of the 126 videos to be the full sample for the purpose 
of the current study.

Table 2

Teacher Demographics for the Video Sample in Study Year 1
Sample size by condition Sample size by grade Total

Characteristic
CGI 

(n = 26)
Comparison 

(n = 16)
Grade 1 
(n = 22)

Grade 2 
(n = 20) (N = 42)

Years of teacher experience
3 or fewer 8 4 6 6 12
4 or more 18 12 16 14 30

Gender
Female 24 16 21 19 40
Male 2 0 1 1 2

Race/ethnicity
Asian/Pacific Islander 0 0 0 0 0
Black 2 0 1 1 2
White 23 15 21 17 38
Hispanic 2 1 0 7 3
Note. No demographic information was missing for teachers in the sample. Race/ethnicity totals may exceed sample size because teachers could select 

all that apply.
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The CGI PD Program
The CGI PD program was designed and delivered by Teachers Development Group (http://www .teachersdg .org) under 

the direction of Linda Levi, who was the Director of CGI Initiatives at Teachers Development Group at the time. The 
entire program consisted of 8 days of teacher workshops per year (4 days in summer, 2 in fall, 2 in winter) for 3 years. 
Research-based frameworks for problem types and strategies are salient features of CGI and were referred to throughout 
the program. The program provided teachers with opportunities to learn about robust and predictable developmental 
progressions that described how children’s knowledge and understanding of mathematics become more sophisticated 
over time. The content of the workshops focused on number (whole numbers and base ten) and operations as well as 
algebraic thinking. Workshop leaders guided teachers to construct their own understanding of the frameworks through 
in-depth analysis and discussion of student work and student thinking as they solved mathematics problems. Teachers 
participated in two classroom-embedded workshop days (Levi, 2017; Nielsen et al., 2016; Schoen & Champagne, 2017) 
per year and were introduced to the purposeful pedagogy model (Jaslow & Evans, 2012). Lessons implemented during 
classroom-embedded days were structured around the instructional design model described by Smith and Stein (2011), 
although that connection was not made explicit to the participating educators. Schoen, Bray, et al. (2022) described the 
CGI program in more detail.

Data Collection
During the 1st year, two mathematics lessons on 2 separate days were video recorded in each teacher’s classroom between 

mid-December and mid-February. Teachers in the CGI condition had all attended 6 of 8 days of the 1st year of the CGI PD 
workshops before the lessons were recorded.

During the 2nd year, one mathematics lesson was video recorded in each teacher’s classroom between mid-December 
and mid-February. At the point of video recording, all teachers in the CGI condition whose classrooms were videotaped 
had attended 8 days of the 1st year of CGI PD and 6 of the 8 days of the 2nd year of PD. To avoid bias stemming from 
different times of the school year or days of the week, observation days were scheduled so that CGI and comparison class-
rooms were video recorded on the same days.

Participating teachers knew when lessons would be observed and video recorded. For all video recorded lessons, teachers 
were asked to teach in the same manner that they would have taught if an observer were not present. Approximately 90% 
of the lessons (113 out of 126) focused on number and operations. The other 13 lessons focused on measurement and were 
close to evenly divided between the CGI and comparison classrooms (six CGI, seven comparison).

The participating teachers indicated the beginning and end of the lesson to the camera operator. The duration of the 
lessons in both conditions was usually about 60 min. The minimum duration in CGI and comparison classrooms was 27 
and 30 min, respectively. The median and mean for both conditions were between 59 and 61 min. The maximum duration 
in the CGI and comparison classrooms was 98 and 95 min, respectively.

Table 3

Teacher Demographics for the Video Sample in Study Year 2
Sample size by condition Sample size by grade Total

Characteristics
CGI 

(n = 24)
Comparison 

(n = 23)
Grade 1 
(n = 27)

Grade 2 
(n = 20) (N = 47)

Years of teacher experience
3 or fewer 3 5 3 5 8
4 or more 21 18 24 15 39

Gender
Female 24 23 27 20 47
Male 0 0 0 0 0

Race/ethnicity
Asian/Pacific Islander 0 0 0 0 0
Black 1 0 0 1 1
White 22 21 27 16 43
Hispanic 2 3 2 3 5
Note. No demographic information was missing for teachers in the sample. Race/ethnicity totals may exceed sample size because teachers could select 

all that apply.
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The first 20 videos in the 1st year were filmed by members of the research team. The remaining 106 videos were filmed 
by professional videographers using two vantage points (one stationary camera positioned for a broad view of the students 
and presentation space in the classroom, another camera following the teacher) and two microphones (one lapel microphone 
on the teacher, one shotgun microphone on the fixed camera). The two videos per class were combined into a single frame 
using picture-in-picture technology, and the combined frame was used for rating purposes.

Observer Training and Certification
Fourteen potential observers, including five coauthors of this article, participated in 12 hr of training on the M-CLIPS 

instrument. Training was distributed across four sessions in a synchronous online instruction format. Three of the M-CLIPS 
authors served as the trainers for these sessions. Between sessions, potential observers completed additional practice 
scoring exercises.

Following training, potential observers who were not members of the author team completed a certification process in 
which they were required to apply the M-CLIPS instrument to two video-recorded mathematics lessons. Specifically, 
observers rated the lessons using each of the nine M-CLIPS rubrics and gave detailed justifications for their ratings for 
each; these were blind-reviewed by the author team. Observers were certified if their ratings were within the acceptable 
ranges as determined by the maximum and minimum ratings of the author team, and their written justifications demon-
strated high degrees of understanding of the principles and rubrics. Of the nine potential observers who were not members 
of the M-CLIPS author team, five were certified on their first certification attempt, three were certified through a second 
certification attempt after two additional training sessions, and one potential observer was never certified because of a 
failure to meet the criteria during either attempt.

Certified observers were then assigned videos to rate. Observers viewed an assigned lesson once without pausing while 
simultaneously writing field notes on paper. They then considered evidence from their field notes concerning each of the 
nine rubrics that compose the M-CLIPS instrument and the scoring guidance protocol to assign an ordinal rating of 0–5 
for each rubric. These ratings were documented on a paper rating sheet and entered into a database using FileMaker (version 
18) software. Observers were not made aware of the treatment conditions of the classrooms in the videos.

M-CLIPS Measurement Properties
We assume unidimensionality of the underlying construct (i.e., implementation of CGI principles) as measured by the 

nine M-CLIPS rubrics, and analyses of empirical data presented elsewhere (Schoen et al., 2021) supported that assumption. 
Employing a many-facet Rasch model using the sample of 47 videos from the 2nd year and the pilot version of M-CLIPS, 
reliability for three facets (i.e., observers, lessons, and items) was estimated to be .78, .98, and .98, respectively.

Data Analysis and Results
We now turn our focus to the analysis of M-CLIPS data and interpretation of the results to answer our two research 

questions. Because of the study’s exploratory nature, some of the interim results influenced subsequent data analysis 
decisions. Thus, we decided to describe our analysis methods and the associated results in the same section. All descriptive 
statistics were produced using IBM SPSS Statistics (Version 26) software.

Table 4

Summary of the Rubric Ratings for the Full Sample
Rubric N Min Max Mean SD
Autonomy (AUTO) 378 0 5 2.59 1.52
Variation (VAR) 378 0 5 2.66 1.45
Respect (RSPT) 378 0 5 2.63 1.45
Cognitive Complexity (CC) 378 0 5 2.65 1.36
Attend (ATND) 378 0 5 2.71 1.36
Teacher Support for Peer Interaction (TSPI) 378 0 5 2.47 1.17
Peer Interaction (PRI) 378 0 5 2.29 1.07
Express-Elaborate (EE) 378 0 5 2.63 1.33
Connecting Representations (CR) 378 0 5 2.94 1.22
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Ratings on Individual Rubrics
We conducted initial exploratory analyses to examine the individual ratings on each of the nine M-CLIPS rubrics. Table 4 

presents descriptive statistics. Observers used the full range of the rating scale on all nine rubrics with the videos in this 
sample, suggesting that the range of ratings for each rubric is reasonably well calibrated to the range of practices that may 
be observed in classrooms. The Autonomy ratings had the most variation. Peer Interaction had the lowest overall mean 
rating and the least variation. Teacher Support for Peer Interaction had the second lowest mean and second least amount 
of variation. Connecting Representations had the highest overall ratings.

We disaggregated the data by treatment condition (i.e., CGI, comparison) and examined the frequency distributions of 
the ratings for each of the nine rubrics (Figure 2). More than half (59%) of the videos were from CGI-condition classrooms, 
so we standardized the results by reporting the percentage within each condition to adjust for the imbalance between 
treatment conditions and enable informal comparison.

The center of the distribution within each rubric was substantially higher for the videos of classrooms in the CGI condi-
tion than for those in the comparison condition. The modal rating in the comparison condition was 1 for eight of the nine 
rubrics (the modal rating was 2 for Connecting Representations). In sharp contrast, the modal rating in the CGI condition 
was 4 in eight of the nine rubrics (the modal rating was 3 for Peer Interaction).

The frequency of the ratings for each of the M-CLIPS rubrics, disaggregated by condition, is given in Table 5. This 
visualization of the data again also shows a clear distinction between the observed instructional practice in the lessons 
implemented by the CGI and comparison groups. Almost all (95%) of the ratings in the CGI classrooms were in the medium 
to high levels (ratings 2–5), indicating at least a weak implementation of the CGI principles. Conversely, we found that 
59% of the ratings of lessons delivered by teachers in the comparison condition were in the low levels (i.e., ratings of 0 
or 1), indicating that instructional practices in classrooms in the control group did not present evidence of alignment with 
the CGI principles.

Overall, patterns across the rubrics varied between treatment groups. Whereas the two Interaction rubrics were the most 
difficult (i.e., lowest mean rating) of rubrics within the CGI condition, those two rubrics were mid-level difficulty within 
the comparison sample. Within the comparison condition, all four Problem Solving rubrics had a lower mean rating than 
the Interaction rubrics. Autonomy had the lowest mean rating and the highest incidence of ratings of 0 within the compar-
ison group, implying that teachers in the comparison condition consistently told students how to solve problems. Connecting 
Representations had the highest mean rating in both conditions, implying that multiple representations of mathematics 

Figure 2

Sample Distribution of the Ratings on Each M -CLIPS Rubric Disaggregated by Treatment Condition
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ideas were used in both conditions, although the average rating for that rubric was considerably higher in the CGI group 
than in the control group.

The incidence of extreme ratings also differed by treatment condition. A rating of 5 was assigned 201 times in the CGI 
sample, which amounted to 10% of the ratings within that condition. The 5s were most common in the Autonomy, Variation, 
Respect, and Cognition rubrics. Conversely, a rating of 5 was assigned only five times (< 0.5% of the ratings) in the 
comparison condition. The five ratings of 5 in the comparison condition occurred in the Respect, Teacher Support for Peer 
Interaction, and Connecting Representations rubrics. Meanwhile, a rating of 0 occurred only four times for lessons in the 
CGI group, but 0s were assigned 95 times to lessons in the control group. Most of the 0s in the control group occurred in 
the four rubrics associated with the Problem Solving principle (Principle 1). No lessons in the CGI group received a rating 
of 0 on rubrics associated with Principles 1, 2, or 4. Two instances of a rating of 0 for each of the two rubrics associated 
with Principle 3 (i.e., Teacher Support for Peer Interaction and Peer Interaction) occurred in the CGI condition.

M-CLIPS Total Scores
After looking at the data for individual rubrics, we focused on generating and analyzing overall M-CLIPS scores. We 

first computed the arithmetic mean of the nine rubric ratings for each video and observer, resulting in an M-CLIPS score. 
This scoring method produces scores on a scale with a theoretical range that matches the raw rating for each rubric and 
supports the use of the cut score of 2 for meaningful interpretation of the M-CLIPS score. This process resulted in three 
M-CLIPS scores per lesson. We then computed the arithmetic mean of those three scores so that each of the 126 videos 
had exactly one score—the mean value of the three M-CLIPS scores. For brevity, we simply refer to this value as the 
M-CLIPS score. Figure 3 presents a visualization of the data for the full sample and for the CGI and comparison 
subsamples.3

When disaggregated into the CGI and comparison conditions, the boxplots reveal clear differences in the M-CLIPS 
scores in the CGI and comparison condition. Less than one quarter of the data overlap. More than three quarters of the 
M-CLIPS scores for comparison lessons were lower than the nonoutlier M-CLIPS scores in the CGI group. Conversely, 
three quarters of the M-CLIPS scores for CGI-condition lessons were higher than the maximum score in the comparison 
group. Although the full range of observed ratings was used at the rubric level, we do not see any obvious ceiling or floor 
effects in the M-CLIPS scores.

Figure 3 uses the standard method of identifying outliers that are more than one-and-a-half times the interquartile range 
from the median. By this method, values lower than 2 in the CGI group were considered outliers, and only the outliers in 

3 We	note	that	the	measures	of	variability	(i.e.,	standard	deviation,	range,	and	interquartile	range	[IQR])	are	affected	by	the	decision	to	report	the	
mean of the three scores rather than all three observations per video; the resulting variability statistics are therefore smaller in magnitude than they 
would	have	been	had	we	used	all	three	scores	for	each	video	to	calculate	the	estimate.	Outliers	are	identified	using	the	standard	rule	of	the	median	
±1.5 × IQR.

Figure 3

Boxplots of M-CLIPS Scores for Full Sample and Disaggregated by Treatment Condition 

Note. M-CLIPS scores are the arithmetic mean of the three M-CLIPS scores calculated from the rubric ratings assigned by the three 
observers for each video.
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the CGI group had M-CLIPS scores lower than 2. More than three quarters of the M-CLIPS scores in the comparison 
condition were less than 2. These scores imply that instructional practices in the CGI group were generally consistent with 
CGI principles, but the instructional practices in the comparison group were not.

Testing for Group-Level Differences in M-CLIPS Scores
To examine the statistical evidence for the ability of M-CLIPS to detect differences in instructional practice, we compared 

the average M-CLIPS ratings between the CGI and comparison groups. The research design created several dependencies 
in the data. Some teachers were selected for the lesson observation only in Year 1, some in both years, and others only in 
Year 2. Lessons taught by the same teacher might not be independent. Each video was rated by three observers, creating 
another dependency. Teachers in the CGI condition in the Year 1 data had participated in one year of the CGI program, 
whereas teachers in the CGI condition in the Year 2 data had participated in 2 years of the CGI program, thereby creating 
a systematic difference between the 2 years of data. Last, teachers are nested within schools, and lessons taught by teachers 
in the same schools may correlate. To address the multiple levels of dependencies in the data, we specified multilevel 
models for our analyses. We also separated the 2 years of data to test for group differences in each year of the study to 
eliminate dependencies stemming from repeated teacher participation in data collection (within or across years) and 
acknowledge the differences in intervention dosage teachers received in Years 1 and 2.

We specified one model per year to produce estimates for the difference in average M-CLIPS ratings between CGI 
treatment and control groups. The mean of the nine M-CLIPS rubric ratings served as the dependent variable in both 
models. The independent variable was the treatment indicator (1 = CGI, 0 = comparison). We specified hierarchical linear 
models (HLMs) using the lmerTest package in R (v3.1–3; Kuznetsova et al., 2017) to account for dependencies stemming 
from nested observations. Raters were nested within lessons, lessons were nested within teachers, and teachers were nested 
within schools (Raudenbush & Bryk, 2002). For the Year 1 model, we specified a four-level HLM and included random 
intercepts for lessons, teachers, and schools. For Year 2, we specified a three-level HLM and included random intercepts 
for lessons and schools (we did not need to account for teacher random effects in Year 2 because each teacher in the Year 
2 sample was observed exactly once in that year). Estimates for the treatment indicator were positive in each wave of data 
collection (Year 1: b = 1.85, t = 8.08, p < .001; Year 2: b = 2.05, t = 12.76, p < .001). This indicates that, on average, M-CLIPS 
ratings in the CGI group were higher than those of the control group in both years of data collection, and the differences 
were statistically significant.

For each year, we calculated an intraclass correlation (ICC) to evaluate the interrater reliability of M-CLIPS ratings on 
lessons using the ICC package in R (v2.4.0; Wolak et al., 2012). We computed the ICC(1,1) using single measurements, 
absolute agreement, and a one-way random effects model because lessons were randomly assigned to different sets of raters 
(Koo & Li, 2016). ICCs of raters on lessons were .79 in Year 1 (95% CI: [.72, .85]) and .85 in Year 2 (95% CI: [.77, .91]), 
indicating acceptable levels of interrater reliability in both years.

Discussion
The purpose of this study was to use M-CLIPS to examine the extent to which teachers participating in the CGI and 

comparison groups were implementing observable features of mathematics instruction in a manner consistent with CGI 
principles. Results reported in this article provide some evidence to support the argument that M-CLIPS can be used to 
detect the implementation of CGI in mathematics lessons. The arithmetic mean of the ratings is an acceptable method of 
scoring, yielding a continuous variable with a theoretical minimum of zero and a maximum of 5. As described in the 
interpretation and use statement in the Appendix, scores less than 2 indicate little or no evidence of implementation of 
CGI. Scores of 2 or greater imply that the teacher is implementing the practices described in the nine rubrics at a level that 
would be consistent with at least a novice level of implementation of CGI. Scores in the range of 4–5 indicate exemplary 
practice of CGI. Our results indicate that the instructional practices of teachers in the CGI group were consistent with CGI 
principles in the 1st and 2nd year of their participation in the CGI PD program, but the instructional practices of the majority 
of teachers in the comparison groups were not.

M-CLIPS scores detected statistically significant differences in CGI-related instructional practices between groups of 
teachers assigned to CGI or a comparison condition. These group differences were detected in the 1st year of the program 
and again during the 2nd year. These findings provide some initial evidence that the M-CLIPS instrument may be able to 
discriminate among instructional practices that are consistent with CGI and those that are not.

We observed the most drastic distinction between the CGI condition and the comparison condition with respect to the 
four rubrics associated with problem solving, indicating that classrooms in which teachers had participated in the CGI PD 
were more consistent with a problem-solving approach to teaching and learning. The four rubrics associated with problem 
solving focused on student autonomy, variation in approaches students used to solve problems, the teacher demonstrating 
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respect for students, and cognitive complexity of the enacted mathematical tasks. With four of the nine rubrics associated 
with the problem-solving principle contributing to the overall M-CLIPS score, the high scores on the problem-solving- 
oriented rubrics in the CGI group probably greatly influenced the treatment–control contrast.

The CGI program encourages the use of problem solving as an integral component of mathematics instruction, and these 
data provide evidence that teachers responded positively to the CGI program by implementing more problem solving in 
their classrooms. At the same time, we found that instruction in comparison classrooms was generally inconsistent with a 
problem-solving approach. The data suggest that the teachers in the CGI condition were learning to pose problems with 
higher cognitive complexity and maintain higher cognitive complexity as the lesson unfolded, the latter of which is atypical 
of U.S. mathematics instruction (Stigler & Hiebert, 2009). Through the M-CLIPS ratings from the Autonomy, Variation, 
and Respect rubrics, we can see that the teachers in the CGI program were using instructional practices that provide students 
with more agency and autonomy in their mathematics learning and may be transitioning toward a more asset-oriented 
approach to teaching.

Data from the Variation rubric indicate that students in comparison classrooms used a narrower set of strategies to solve 
problems than those in CGI classrooms. We think this factor is probably not something teachers could change for the day 
they were observed, especially when they did not know that this aspect of their class would be monitored. That is, students 
would probably not increase the variation in the types of strategies they used to solve problems simply in response to being 
observed. Thus, this indicator suggests that teachers in CGI classrooms encouraged more agency and autonomy in their 
classrooms, even on the days preceding the observed lessons.

The data from the Attend rubric imply that teachers in the comparison group primarily engaged in classroom assessment 
that focused on whether students produced correct answers or used a prescribed procedure correctly. They rarely asked 
questions to probe student thinking or understanding. The data also imply that teachers in the CGI program, conversely, 
were attending to students’ thinking processes. These results imply that teachers could make these shifts in their instruc-
tional practice toward a problem-solving approach and attend to student thinking within the first 2 years of their partici-
pation in the PD program.

The rubrics associated with the Interaction principle appear to be the most difficult for teachers in the CGI condition to 
implement at high levels, as evidenced by lower mean scores on these rubrics compared with those associated with other 
principles. Orchestrating classroom interaction among students to engage them in discussion about their own mathematical 
ideas may require more time or a different intervention from the one in this study.

The most common rating for eight of the nine rubrics in comparison lessons was 1, but the most common rating for 
Connecting Representations in comparison lessons was 2. This suggests that multiple forms of nonverbal representations 
of mathematics are usually present in the practice-as-usual condition, at least to some minimal degree.

Limitations and Next Steps
The four principles we describe are not isomorphic to the principles described in the definitive CGI books because we 

limited our scope to those principles of CGI that could be observed during mathematics instruction. For example, one 
fundamentally important component of CGI implementation—adjusting the instructional plan in response to student 
interests, experience, and understanding—is conspicuously absent from the set of principles. We made the difficult choice 
not to measure that component because we thought doing so would not be feasible without spending considerable time in 
a given classroom and engaging in conversation with teachers about their decisions.

We created four, one, two, and two rubrics corresponding to each of the four CGI principles, respectively. As a result, 
the method of scoring presented herein weights the problem-solving principle (Principle 1) more heavily than the other 
principles in the aggregate score. Conversely, the cognition principle (Principle 2) is weighted the least.

Generalizations of these results should be appropriately limited. This study was conducted only in first- and second-
grade classrooms, and we cannot know from the current study whether these results would be replicated in other grade 
levels. We studied only one CGI PD model, and the results of this study cannot be generalized to the other CGI PD 
models that exist. Teachers did not know what we were looking for when we conducted the observations, but they did 
know that we were coming. We cannot know whether the instructional practice that we observed is representative of 
the other days of mathematics instruction in the sample classrooms. However, we can reasonably expect that all teachers, 
irrespective of condition, probably attempted to demonstrate their best effort at doing what they thought the observers 
wanted to see.

The CGI PD program may affect individual teachers differently. This study was not designed to enable fine-grained 
distinctions among individuals. In addition, the current study does not estimate the size of the impact on instructional 
practice; it tests only for group differences. Further research is needed to estimate the effect of CGI on instructional prac-
tice, the effects of these facets of instructional practice on student learning, and the heterogeneity in those effects.
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Observations occurred through video of classroom instruction. We have not yet used M-CLIPS in real-time observations. 
Real-time observations may provide the observers with a different perspective than the video camera can, especially for 
some rubrics (e.g., Variation, Peer Interaction). The video camera possibly limited the ability of the raters to observe inter-
action, thereby introducing a downward bias to the ratings. Because we had, at most, only one or two lessons observed in 
each classroom, our ability to examine the test–retest reliability or stability/error in measurement within a single classroom 
is also limited at this time. Scoring procedures for the M-CLIPS assumed unidimensionality of the underlying construct 
(i.e., implementation of CGI principles). Due diligence is needed to evaluate the validity of this assumption and other 
aspects of structural validity (Flake et al., 2017). These are all important areas for future research.

Conclusions
This study offers a conceptual framework for observable features of mathematics instructional practices that are aligned 

with CGI principles. These instructional practices are also consistent with aspects of mathematics instruction that many 
in the mathematics education community consider to be desirable and productive. We consider the four principles to be 
substantive and durable, but they are not intended to be comprehensive or limiting, and they may ultimately be subject 
to reinterpretation.

On the basis of this study, M-CLIPS appears to be able to detect group-level differences between the instructional practice 
of teachers who have been involved in the CGI PD program and those who have not. Results indicate that teachers in the 
CGI program were implementing mathematics instruction in ways that are consistent with CGI principles, but teachers in 
the control group mostly implemented mathematics lessons in ways that were inconsistent with CGI principles. This study 
supports the assertion that M-CLIPS measures the kind of instructional shifts expected as a result of CGI PD.

This study represents a major step toward conceptualizing and measuring some key instructional practices that are 
consistent with CGI principles. We are hopeful that this work may ultimately provide both empirical data to help identify 
observable features of mathematics instructional practice that improves student learning and a method of measuring those 
practices that can be used to support large-scale research and further discovery regarding approaches to mathematics 
instruction that support student learning.
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APPENDIX

Interpretation and Use Statement for M-CLIPS Observation Instrument (v. 2023-11-03)

Construct and articulation
What is the construct being measured?
Implementation of Cognitively Guided Instruction (CGI) in mathematics lessons.

Why is the construct important to measure?
We identified a need for greater insight into classroom implementation of CGI and data that will support empirical study 
of implementation, outcomes, and the theory of change for CGI programs.

Operationalization and Administration
How is the construct measured?
Certified raters observe live or video recorded mathematics lessons. Duration of lessons may vary but are usually 
30–75 min.

Who is the target population?
Teachers and students engaged in the teaching and learning of mathematics.

What is the context for administration?
At this time, M-CLIPS has been administered only by researchers for research purposes using video recorded lessons.

What costs are associated with the instrument?
The M-CLIPS instrument is available to the public, free of charge, through a Creative Commons–by Attribution license. 
Raters must successfully complete M-CLIPS observer training to demonstrate qualifications.

Scores and Usage
How are scores calculated?
Scoring may use the sum or arithmetic mean of the raw ratings for the nine rubrics or a many-facet Rasch model. The 
former method is simpler for scoring and interpreting scores. The latter has many affordances, such as statistical adjustment 
for rater severity and separate calculation of reliability for raters and the measure, but requires various design elements, 
such as linking across raters.

How should scores be interpreted?
Raw rubric ratings of less than 2 indicate that the implementation of the mathematics lesson is inconsistent with CGI 
principles. Ratings of 2 or 3 indicate weak or moderate implementation of CGI principles, respectively. Ratings of 4 or 5 
indicate strong implementation of CGI principles; 5 is reserved for exemplary approaches.

How should scores be used?
M-CLIPS scores can be used to quantify the implementation of core principles of CGI in mathematics lessons.

What cautions or warnings should be considered?
M-CLIPS should not be used to evaluate individuals or make high-stakes decisions. Scores may be interpreted differently 
if the observed teachers are aware of the nine rubrics in M-CLIPS and whether the observers are using M-CLIPS in their 
observations. Real-time observation and rating of lessons with M-CLIPS will need to be done before we know whether 
the instrument can be used in that way and whether the results are comparable between video and real-time, 
in-classroom observations.
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